Process Safety Management in Shell

Rob Jager
Chairman, Shell Companies in New Zealand
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control, by having either a majority of the voting rights or the right to exercise a controlling influence. The companies in which Shell has significant influence but not control are referred to as “associated companies” or “associates” and companies in which Shell has joint control are referred to as “jointly controlled entities”. In this presentation, associates and jointly controlled entities are also referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 24% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2010 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, September 2, 2012. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
Number of well known tragic disasters that show that lack of process safety focus can result in massive consequences.

Design, hazard analysis, material verification, corrosion management, operational competence, equipment maintenance, alarm management, failure investigation… all play a part.

Ref: Baker Report into the Texas City Refinery Explosion
Focus On The Risk

Ratio LTIs/FAT

Often fatal

Seldom fatal

TRCF questionable metric to monitor process safety performance

TRCF useful metric to monitor personal safety performance
‘Process Safety’ is the management of hazards that can give rise to major industrial incidents, involving release of energy and/or potentially dangerous materials.
Shell‘s Approach
Shell Vision: “Our assets are safe, and we know it” ("and we can show it")

We design and build so that risks are As Low As Reasonably Practicable (ALARP)

Design Integrity

Technical Integrity

We maintain the hardware barriers

Leadership

We work within the operational barriers

Operating Integrity

Integrity

Copyright of Shell New Zealand Ltd

Process Safety Management

Sep 2012
Integrity Barriers (Safety Critical Elements)

- Identify major hazards
- Create barriers (SCE’s) to prevent the Hazard from resulting in an incident
- Create further barriers minimise escalation
Wells Process Safety Bow-Tie

Minimize Likelihood

Standards
- Global Wells Standards
 - Well Design Manual
 - Well Control Manual
 - Well Integrity Manual
- Rig Safety Cases

People
- Competence Testing (rd 1 & rd 2)
- Technical Authorities (DCAF)
- Principal Technical Experts
- Contractor competency

Equipment
- Well Specifications/Design
- Multiple Safety Barriers
- Equipment Qualification and Testing
- Well Integrity Monitoring
- Well Construction – 24/7 Real Time Operating Centre’s

Incident Response

Mitigate Consequences

Standards
- Cap and Contain – Well Design
- Well Control Manual
- Blowout containment plan
- Well Kill Program
- Relief well plan – pre spud

People
- Blowout support contractors
- Technical Authorities (DCAF)
- Principal Technical Experts

Equipment
- Well Control Equipment – Cap and Contain
- Spill containment
- Oil Spill Containment System
 (Joint Project – required GOM only)
Design integrity: Shell Minimum Requirements

- Prevent recurrence of known major process safety incidents by eliminating their main causes

- 11 minimum requirements, e.g.
 - Safe siting of occupied portable buildings
 - BP Texas City Isomerisation Unit Explosion
 - Avoid tank overfill followed by vapour release
 - Buncefield storage terminal explosion
 - Alarm management
 - Three Mile Island, Longford
 - Management of change
 - Flixborough, Chernobyl

- Applied to both new designs and retrospectively
- Derogation from minimum requirements must be approved at the highest level (Shell CEO)
Fit-for-purpose dual shear rams

Design well for cap & shut-off

Two well barriers

Availability of cap and contain equipment
Technical Integrity

- Identify safety critical elements (SCEs)
- Set performance standards for SCEs
- Carry out hardware barrier assessments
- Monitor performance indicators

Hazard
- Structural integrity
- Process containment
- Ignition control (in hazardous areas)
- Operator action
- Process control
- Alarms
- Ultimate safeguards
- Penultimate safeguards
- Loss of containment event
- Fire & Gas detection
- Shutdown systems
- Emergency response
- Major incident

Escalation barriers
- Prevention barriers
Technical Integrity: Hardware Barrier Assessments

- Selected barriers assessed each year
- Carried out by appointed “Technical Authorities”
- Interview staff
- Witness planned function tests
- Site visits with physical observations of equipment
- Corrective action workshop
- Action follow-up
Operating Integrity

Vulnerabilities
- Actively manage latent issues
- Capture vulnerabilities
- Assess the risk & identify measures to eliminate/ control/ mitigate
- Implement required measures
- Review by Senior Leadership

Deviations
- Deviations to normal operation or compromised safety system
- Assess cumulative risk
- Identify mitigations
- Endorsed by Technical Authorities
- Approved by Asset Manager
Operating Integrity

- Operating envelopes
 - Ensure operation stays within the pressure/temperature envelope
 - Reviewed by control room operator every 3 hours
 - Excursions reviewed quarterly by senior management

- Alarm review
 - Spurious alarms detract focus from real issues
 - Weekly review (top 5 alarms and “standing” alarms)

- Alarm Steering Committee
 - Set direction and improvement targets
 - Alarms database to capture alarm purpose, required response etc.
 - Automatic suppression to remove nuisance alarms, e.g.
 - Alarm when pump is shutdown
 - Standing alarms when plant is shutdown
Monitoring

- Monitoring the health of the integrity management system is absolutely critical.
- Use both leading and lagging indicators.
- “Kick the tyres and check the green” Just because report shows green doesn’t mean everything is OK.
- Visit the facilities and talk to staff about process safety.
- Transparency drives compliance.

- Regularly review key indicators throughout the organization.
- FSR (Facilities Safety Reporting) for facilities and e-WIMS (Electronic Well Integrity Management System) for Wells.
Monitoring - Key Performance Indicators

Indicators are developed specific to the business

- Tier 1 – Loss of primary containment
- Tier 2 – Loss of primary containment (lesser consequence)
- Tier 3 – Challenges to safety systems
 - Safe operating envelope excursions
 - Demands on safety systems
 - Primary containment inspection outside limits
- Tier 4 – Operating discipline & management system
 - Safety critical element compliance
 - Manage operation outside normal window
 - Competence
 - Functional leadership

Reviewed quarterly at process safety management meeting

API- RP 754 – Process Safety Performance Indicators
People – Expertise, Competency Testing & Enhancement

- People are the Most important Barrier
 - Enough, right caliber, Right process safety competences
 - Need to know what they need to do in any given role
 - Right technical and behavioural skills to manage the risk they face

- Wells – an Example
 - Round 2 and Round 2 Diploma
 - Trade test before hire for all consultants
 - Advanced Well Control course (2 week duration) inclusive of examination - mandatory every 2 years for all operations staff and contractor supervisory staff.
 - New live well simulator as part of advanced well control for well interventions
 - Contractor Competency: Well CAP and IWCF well control certification standard.
 - Principal Technical Experts – network of industry-renowned experts to support and assure Shell’s well designs and technical standards
Leadership and Process Safety Culture

Can you Say …….. ?

- I understand the errors we cannot afford to make
- My safety cases are living, evolving, and operationalised
- We have good Process Safety KPIs to help monitor effectiveness of our controls & regularly discuss them at leadership meetings
- In my organisation all process safety incidents & near misses are investigated and I ensure actions are tracked & completed

- I understand our standards and make sure they are applied
- Derogations to my company’s standards are risk assessed endorsed by technical authority and are visible to me
- We have an effective Management of Change (MoC) process
- We know the risk of becoming complacent
- We ask the difficult questions and take the right corrective actions before catastrophe strikes

Old Chinese proverb You should dig the well before you’re thirsty